
CLIP OS: Building a defense-in-depth OS
around Linux kernel security improvements

Timothée Ravier, Mickaël Salaün

Agence nationale de la sécurité des systèmes d’information (ANSSI)

September 26, 2018

About the ANSSI

I Agence nationale de la sécurité des systèmes d’information

I French authority in the area of cyberdefence, network and information
security

I We are not an intelligence agency

ANSSI CLIP OS: Building a defense-in-depth OS 2/27

Overview

CLIP OS ?

I Linux distribution developed by the ANSSI

I Initially only available internally

I Now open source, mostly under the LGPL v2.1+
I Code and issue tracker hosted on GitHub:

I Version 4: available as reference and for upstream patch contribution1

I Version 5: currently developed version, alpha status2

1https://github.com/CLIPOS-Archive
2https://github.com/CLIPOS

ANSSI CLIP OS: Building a defense-in-depth OS 4/27

https://github.com/CLIPOS-Archive
https://github.com/CLIPOS

Hardened OS

I Hardened Linux kernel and userspace

I Confined services

I "Unprivileged" admin, audit and update roles:
⇒ the root account is not usable

I Automatic updates using A/B partition model (similar to Android 7+)

ANSSI CLIP OS: Building a defense-in-depth OS 5/27

Multilevel security OS

I Provide two isolated user environments: low and high
I Interactions follow the Bell-LaPadula model:

I Write up: upload documents from low to high
I Read down: high has read only access to untrusted USB devices
I Trusted write down: encrypt documents from high to write them in low

I Level high can only access network through a VPN

I Per level user device assignment

ANSSI CLIP OS: Building a defense-in-depth OS 6/27

Multilevel from the end user point of view

ANSSI CLIP OS: Building a defense-in-depth OS 7/27

Admin panel: devices assignment per level

ANSSI CLIP OS: Building a defense-in-depth OS 8/27

Differences with Qubes OS

CLIP OS development began 5 years earlier than Qubes OS

Goal of CLIP OS
I We target non-expert users
I Bell-LaPadula model with two levels
I We favor a defense-in-depth approach

Technical point of view
I Hypervisor vs. supervisor isolation
I Limited access right, even for the administrator

ANSSI CLIP OS: Building a defense-in-depth OS 9/27

Differences with Qubes OS

CLIP OS development began 5 years earlier than Qubes OS

Goal of CLIP OS
I We target non-expert users
I Bell-LaPadula model with two levels
I We favor a defense-in-depth approach

Technical point of view
I Hypervisor vs. supervisor isolation
I Limited access right, even for the administrator

ANSSI CLIP OS: Building a defense-in-depth OS 9/27

Differences with Qubes OS

CLIP OS development began 5 years earlier than Qubes OS

Goal of CLIP OS
I We target non-expert users
I Bell-LaPadula model with two levels
I We favor a defense-in-depth approach

Technical point of view
I Hypervisor vs. supervisor isolation
I Limited access right, even for the administrator

ANSSI CLIP OS: Building a defense-in-depth OS 9/27

Architecture

ANSSI CLIP OS: Building a defense-in-depth OS 10/27

CLIP OS 4

Hardening mechanisms

Gentoo Hardened
I Hardened toolchain
I Flexible patching

Linux-VServer
I Linux namespaces with additional constraints
I Unique container and network IDs: XIDs and NIDs

grsecurity/PaX
I Kernel self-protection (e.g., memory protection, CFI)
I Multiple userspace hardening features (e.g., chroot, TPE)

CLIP LSM
I Complement the Linux permission model
I Leverage Linux-VServer and grsecurity/PaX

ANSSI CLIP OS: Building a defense-in-depth OS 12/27

Hardening mechanisms

Gentoo Hardened
I Hardened toolchain
I Flexible patching

Linux-VServer
I Linux namespaces with additional constraints
I Unique container and network IDs: XIDs and NIDs

grsecurity/PaX
I Kernel self-protection (e.g., memory protection, CFI)
I Multiple userspace hardening features (e.g., chroot, TPE)

CLIP LSM
I Complement the Linux permission model
I Leverage Linux-VServer and grsecurity/PaX

ANSSI CLIP OS: Building a defense-in-depth OS 12/27

Hardening mechanisms

Gentoo Hardened
I Hardened toolchain
I Flexible patching

Linux-VServer
I Linux namespaces with additional constraints
I Unique container and network IDs: XIDs and NIDs

grsecurity/PaX
I Kernel self-protection (e.g., memory protection, CFI)
I Multiple userspace hardening features (e.g., chroot, TPE)

CLIP LSM
I Complement the Linux permission model
I Leverage Linux-VServer and grsecurity/PaX

ANSSI CLIP OS: Building a defense-in-depth OS 12/27

Hardening mechanisms

Gentoo Hardened
I Hardened toolchain
I Flexible patching

Linux-VServer
I Linux namespaces with additional constraints
I Unique container and network IDs: XIDs and NIDs

grsecurity/PaX
I Kernel self-protection (e.g., memory protection, CFI)
I Multiple userspace hardening features (e.g., chroot, TPE)

CLIP LSM
I Complement the Linux permission model
I Leverage Linux-VServer and grsecurity/PaX

ANSSI CLIP OS: Building a defense-in-depth OS 12/27

Write ⊕ Execute policy

Avoid arbitrary code execution and persistent attacks, improve multilevel
isolation

Memory (PaX)
Deny writable memory to be executable, throughout the system lifetime

Devctl
Enforce and extend W ⊕ X from devices to mount points

Mount points
Enforce W ⊕ X thanks to mount options: ro ⊕ noexec

The O_MAYEXEC flag
Enforce and extend W ⊕ X from mount points to scripts (via interpreters)

ANSSI CLIP OS: Building a defense-in-depth OS 13/27

Write ⊕ Execute policy

Avoid arbitrary code execution and persistent attacks, improve multilevel
isolation

Memory (PaX)
Deny writable memory to be executable, throughout the system lifetime

Devctl
Enforce and extend W ⊕ X from devices to mount points

Mount points
Enforce W ⊕ X thanks to mount options: ro ⊕ noexec

The O_MAYEXEC flag
Enforce and extend W ⊕ X from mount points to scripts (via interpreters)

ANSSI CLIP OS: Building a defense-in-depth OS 13/27

Write ⊕ Execute policy

Avoid arbitrary code execution and persistent attacks, improve multilevel
isolation

Memory (PaX)
Deny writable memory to be executable, throughout the system lifetime

Devctl
Enforce and extend W ⊕ X from devices to mount points

Mount points
Enforce W ⊕ X thanks to mount options: ro ⊕ noexec

The O_MAYEXEC flag
Enforce and extend W ⊕ X from mount points to scripts (via interpreters)

ANSSI CLIP OS: Building a defense-in-depth OS 13/27

Write ⊕ Execute policy

Avoid arbitrary code execution and persistent attacks, improve multilevel
isolation

Memory (PaX)
Deny writable memory to be executable, throughout the system lifetime

Devctl
Enforce and extend W ⊕ X from devices to mount points

Mount points
Enforce W ⊕ X thanks to mount options: ro ⊕ noexec

The O_MAYEXEC flag
Enforce and extend W ⊕ X from mount points to scripts (via interpreters)

ANSSI CLIP OS: Building a defense-in-depth OS 13/27

Write ⊕ Execute policy

Avoid arbitrary code execution and persistent attacks, improve multilevel
isolation

Memory (PaX)
Deny writable memory to be executable, throughout the system lifetime

Devctl
Enforce and extend W ⊕ X from devices to mount points

Mount points
Enforce W ⊕ X thanks to mount options: ro ⊕ noexec

The O_MAYEXEC flag
Enforce and extend W ⊕ X from mount points to scripts (via interpreters)

ANSSI CLIP OS: Building a defense-in-depth OS 13/27

O_MAYEXEC

ANSSI CLIP OS: Building a defense-in-depth OS 14/27

Partitioning

Hardened containers
I Leverage Linux-VServer admin and watch (audit) concepts
I New capability bounding sets: for root and per container
I Hardened chroot

Container content and interaction
I Tailored filesystem layouts per service
I Container management with vsctl and clip-libvserver (self-jailing)

ANSSI CLIP OS: Building a defense-in-depth OS 15/27

Partitioning

Hardened containers
I Leverage Linux-VServer admin and watch (audit) concepts
I New capability bounding sets: for root and per container
I Hardened chroot

Container content and interaction
I Tailored filesystem layouts per service
I Container management with vsctl and clip-libvserver (self-jailing)

ANSSI CLIP OS: Building a defense-in-depth OS 15/27

Veriexec and permissions (CLIP-LSM)

Goal
I Split Linux capabilities (e.g., Fuse, unshare)
I Add new permissions (e.g., network, XFRM)
I Can be tied to an XID
I Does not use xattr (thus independent from the filesystem)

Configuration example: /etc/verictl.d/chromium

/usr /.../ chrome - sandbox 1002 e
SETUID | SETGID | SYS_CHROOT SETUID | SETGID | SYS_CHROOT -
cUP sha256 45 bcbd1 ...

ANSSI CLIP OS: Building a defense-in-depth OS 16/27

Veriexec and permissions (CLIP-LSM)

Goal
I Split Linux capabilities (e.g., Fuse, unshare)
I Add new permissions (e.g., network, XFRM)
I Can be tied to an XID
I Does not use xattr (thus independent from the filesystem)

Configuration example: /etc/verictl.d/chromium

/usr /.../ chrome - sandbox 1002 e
SETUID | SETGID | SYS_CHROOT SETUID | SETGID | SYS_CHROOT -
cUP sha256 45 bcbd1 ...

ANSSI CLIP OS: Building a defense-in-depth OS 16/27

Veriexec example

ANSSI CLIP OS: Building a defense-in-depth OS 17/27

CLIP OS 5

General Linux kernel hardening

I Strict whitelist of kernel options, but easily composable sets
I Paranoid command line

I iommu=force, pti=on, spectre_v2=on, etc.

I Strict sysctl defaults
I kernel.kptr_restrict, kernel.yama.ptrace_scope, etc.

ANSSI CLIP OS: Building a defense-in-depth OS 19/27

Enabling Linux kernel hardening

Goals
I Protecting the kernel from itself and from userspace
I Include additional features for userspace
I Being able to test kernel and userspace coordinated changes

Security may come first
I We can handle minor compatibility breakage in our userspace
I Will accept changes that upstream may reject

Interaction with upstream & KSPP
I Include in-progress or ready-for-upstream patches
I Integrate and validate patches in a single tree
I Maintain hardening patches for latest stable kernel

ANSSI CLIP OS: Building a defense-in-depth OS 20/27

Enabling Linux kernel hardening

Goals
I Protecting the kernel from itself and from userspace
I Include additional features for userspace
I Being able to test kernel and userspace coordinated changes

Security may come first
I We can handle minor compatibility breakage in our userspace
I Will accept changes that upstream may reject

Interaction with upstream & KSPP
I Include in-progress or ready-for-upstream patches
I Integrate and validate patches in a single tree
I Maintain hardening patches for latest stable kernel

ANSSI CLIP OS: Building a defense-in-depth OS 20/27

Enabling Linux kernel hardening

Goals
I Protecting the kernel from itself and from userspace
I Include additional features for userspace
I Being able to test kernel and userspace coordinated changes

Security may come first
I We can handle minor compatibility breakage in our userspace
I Will accept changes that upstream may reject

Interaction with upstream & KSPP
I Include in-progress or ready-for-upstream patches
I Integrate and validate patches in a single tree
I Maintain hardening patches for latest stable kernel

ANSSI CLIP OS: Building a defense-in-depth OS 20/27

Patch series: linux-hardened

Features
I Memory hardening improvements, including:

I better userspace ASLR
I slab allocators hardening (mostly SLUB)
I simpler page sanitizing

I Various restrictions: TIOCSTI ioctl, perf subsystem, device timing side
channels, etc.

I Miscellaneous additions: more BUG_ONs, more __ro_after_init, etc.

I Development status: In progress
I CLIP OS status: Merged
I Upstream status: Most changes unlikely to be merged upstream

ANSSI CLIP OS: Building a defense-in-depth OS 21/27

Patch series: linux-hardened

Features
I Memory hardening improvements, including:

I better userspace ASLR
I slab allocators hardening (mostly SLUB)
I simpler page sanitizing

I Various restrictions: TIOCSTI ioctl, perf subsystem, device timing side
channels, etc.

I Miscellaneous additions: more BUG_ONs, more __ro_after_init, etc.

I Development status: In progress
I CLIP OS status: Merged
I Upstream status: Most changes unlikely to be merged upstream

ANSSI CLIP OS: Building a defense-in-depth OS 21/27

Upstream contribution integration: Lockdown

Features
I Reduce options for root to run untrusted code in kernel context

I Development status: Feature complete
I CLIP OS status: Merged
I Upstream status: Ready for upstream integration

ANSSI CLIP OS: Building a defense-in-depth OS 22/27

Upstream contribution integration: Lockdown

Features
I Reduce options for root to run untrusted code in kernel context

I Development status: Feature complete
I CLIP OS status: Merged
I Upstream status: Ready for upstream integration

ANSSI CLIP OS: Building a defense-in-depth OS 22/27

Upstream contribution integration: STACKLEAK

Features
I Reduce information leaks and block attacks using uninitialized kernel

stack variables:
I Erase the stack before returning from system calls

I Improve runtime detection of kernel stack overflows (e.g. Stack Clash):
I Instrument calls to alloca()

CLIP OS specific changes
I Kept alloca()-related changes (dropped for upstream in v15)

I Development status: Feature complete
I CLIP OS status: Merged
I Upstream status: Ready for upstream integration

ANSSI CLIP OS: Building a defense-in-depth OS 23/27

Upstream contribution integration: STACKLEAK

Features
I Reduce information leaks and block attacks using uninitialized kernel

stack variables:
I Erase the stack before returning from system calls

I Improve runtime detection of kernel stack overflows (e.g. Stack Clash):
I Instrument calls to alloca()

CLIP OS specific changes
I Kept alloca()-related changes (dropped for upstream in v15)

I Development status: Feature complete
I CLIP OS status: Merged
I Upstream status: Ready for upstream integration

ANSSI CLIP OS: Building a defense-in-depth OS 23/27

Upstream contribution integration: STACKLEAK

Features
I Reduce information leaks and block attacks using uninitialized kernel

stack variables:
I Erase the stack before returning from system calls

I Improve runtime detection of kernel stack overflows (e.g. Stack Clash):
I Instrument calls to alloca()

CLIP OS specific changes
I Kept alloca()-related changes (dropped for upstream in v15)

I Development status: Feature complete
I CLIP OS status: Merged
I Upstream status: Ready for upstream integration

ANSSI CLIP OS: Building a defense-in-depth OS 23/27

Upstream contribution: Landlock

Features
I Enables seccomp-bpf -like self-sandboxing for unprivileged processes
I Stackable LSM
I Powered by eBPF
I Dynamic filesystem access control using whitelists & blacklists
I See landlock.io

I Development status: Initial feature set ready
I CLIP OS status: Planned
I Upstream status: Work in progress

ANSSI CLIP OS: Building a defense-in-depth OS 24/27

https://landlock.io

Upstream contribution: Landlock

Features
I Enables seccomp-bpf -like self-sandboxing for unprivileged processes
I Stackable LSM
I Powered by eBPF
I Dynamic filesystem access control using whitelists & blacklists
I See landlock.io

I Development status: Initial feature set ready
I CLIP OS status: Planned
I Upstream status: Work in progress

ANSSI CLIP OS: Building a defense-in-depth OS 24/27

https://landlock.io

Upstream contribution: VServer-like LSM

Features
I Adds a single kernel enforced indentifier for confined environments
I Similar in principle to VServer XID or to "Container IDs"
I Inspired by the VServer patch
I Integrated as a stackable LSM

I Development status: Early development stage
I CLIP OS status: Planned

ANSSI CLIP OS: Building a defense-in-depth OS 25/27

Upstream contribution: VServer-like LSM

Features
I Adds a single kernel enforced indentifier for confined environments
I Similar in principle to VServer XID or to "Container IDs"
I Inspired by the VServer patch
I Integrated as a stackable LSM

I Development status: Early development stage
I CLIP OS status: Planned

ANSSI CLIP OS: Building a defense-in-depth OS 25/27

Conclusion

Take away
I Hardened Linux distro and kernel
I Coordinated userspace and kernelspace
I Support multilevel security

Ongoing project
I Contributions welcome
I Browse the doc and the sources to find more interesting features:

docs.clip-os.org

ANSSI CLIP OS: Building a defense-in-depth OS 26/27

https://docs.clip-os.org

Conclusion

Take away
I Hardened Linux distro and kernel
I Coordinated userspace and kernelspace
I Support multilevel security

Ongoing project
I Contributions welcome
I Browse the doc and the sources to find more interesting features:

docs.clip-os.org

ANSSI CLIP OS: Building a defense-in-depth OS 26/27

https://docs.clip-os.org

Thanks!

� clip-os.org B clipos@ssi.gouv.fr

� v4: github.com/CLIPOS-Archive

� v5: github.com/CLIPOS

We’re hiring! (but not directly for CLIP OS)

Linux system security expert
https://www.ssi.gouv.fr/emploi/expert-en-securite-des-systemes-linux/

https://clip-os.org
mailto:clipos@ssi.gouv.fr
https://github.com/CLIPOS-Archive
https://github.com/CLIPOS
https://www.ssi.gouv.fr/emploi/expert-en-securite-des-systemes-linux/

Boot chain and root partition integrity protection

1 UEFI Secure Boot support:
I Custom keys (i.e. not signed by Microsoft)
I Requires enrollment in hardware

2 Minimal bootloader (gummiboot/systemd-boot)
3 EFI bundle:

I Linux kernel
I initramfs
I kernel command line

4 DM-Verity partition:

I DM-Verity root hash set in kernel command line
I Forward error correction support (FEC)
I Read only uncompressed SquashFS root

filesystem

ANSSI CLIP OS: Building a defense-in-depth OS 28/27

Boot chain and root partition integrity protection

1 UEFI Secure Boot support:
I Custom keys (i.e. not signed by Microsoft)
I Requires enrollment in hardware

2 Minimal bootloader (gummiboot/systemd-boot)

3 EFI bundle:

I Linux kernel
I initramfs
I kernel command line

4 DM-Verity partition:

I DM-Verity root hash set in kernel command line
I Forward error correction support (FEC)
I Read only uncompressed SquashFS root

filesystem

ANSSI CLIP OS: Building a defense-in-depth OS 28/27

Boot chain and root partition integrity protection

1 UEFI Secure Boot support:
I Custom keys (i.e. not signed by Microsoft)
I Requires enrollment in hardware

2 Minimal bootloader (gummiboot/systemd-boot)
3 EFI bundle:

I Linux kernel
I initramfs
I kernel command line

4 DM-Verity partition:

I DM-Verity root hash set in kernel command line
I Forward error correction support (FEC)
I Read only uncompressed SquashFS root

filesystem

ANSSI CLIP OS: Building a defense-in-depth OS 28/27

Boot chain and root partition integrity protection

1 UEFI Secure Boot support:
I Custom keys (i.e. not signed by Microsoft)
I Requires enrollment in hardware

2 Minimal bootloader (gummiboot/systemd-boot)
3 EFI bundle:

I Linux kernel
I initramfs
I kernel command line

4 DM-Verity partition:
I DM-Verity root hash set in kernel command line
I Forward error correction support (FEC)
I Read only uncompressed SquashFS root

filesystem

ANSSI CLIP OS: Building a defense-in-depth OS 28/27

	Overview
	CLIP OS 4
	CLIP OS 5

